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REVIEW ARTICLE

overview of various dimensions of phytoremediation. The analysis provides 
a detailed account of the application of various macrophytes for pollutant 
removal, particularly focusing on heavy metals.

Heavy metals: Source and their consequences

Elements with densities >5 g/cm3 are described as heavy metals [5,6]. Heavy 
Metals (HMs) possess a half-life exceeding twenty years, demonstrating their 
remarkable persistence [7-9]. HMs occur naturally in rocks, but human 
activities have elevated their presence. The excessive application of sewage 
sludge, agrochemicals, wastewater, bio solids, and manure serves as a 
substantial source of HMs in soil [10]. Hazardous heavy metals such as Hg, As, 
Cd, Pb, Cr, Cu, and others are commonly present in wastewater originating 
from sources like mines, sewage, dyes, and alloys [11]. Heavy Metals (HMs) 
are divided into two categories: Essential and non-essential. Elements 
such as Cobalt (Co), Copper (Cu), Chromium (Cr), Iron (Fe), Nickel (Ni), 
Manganese (Mn), and Zinc (Zn) fall under the essential HMs, serving as 
micronutrients but turning toxic with excessive consumption. On the other 
hand, Cadmium (Cd), Mercury (Hg), and Lead (Pb) are non-essential HMs, 
posing extreme lethality to living organisms [12]. Anthropogenic activities 
have a more significant impact on environmental pollution than natural 
sources [13]. Heavy metal accessibility in the soil solution is influenced by 
factors such as the metal's nature, soil attributes (like pH, clay content, and 
organic matter), and exchange reactions, encompassing processes such as 
precipitation and adsorption-desorption [14,15]. In addition to the above-
mentioned sources, heavy metal pollution is exacerbated by the presence of 
cosmetics and chemical fertilizers [16].

Consequences of heavy metal pollution

The accelerated global development and urbanization have amplified the 
possibility of heavy metal contamination in ecosystems [17]. According 
to literature, about 10 million people globally have been affected by soil 
contaminated with heavy metals [18]. The growing prevalence of heavy metals 
in soils is worrisome, not only for plant growth and productivity but also 
due to the potential health threats to both humans and animals [19]. Plant 
growth is adversely affected by heavy metals, leading to a decline in both 
physiological and morphological responses, disruption of nutrient uptake 
processes, and ultimately reducing plant yield [20,21]. Heavy metals negatively 
affect plant growth by decreasing chlorophyll content, inducing chlorosis 
and necrosis, and resulting in plant death through decreased chlorophyll 
content and stomatal closure [22,23]. Human health is negatively affected 
by heavy metals, and consequently, several heavy metals and metalloids can 
pose dangers even at lower concentrations [24-26]. The presence of heavy 
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Phytoremediation, that employs hyper-accumulator plant species that are 
incredibly tolerant to Heavy Metals (HMs) present in the environment 
or soil, is a feasible and promising method for removing HMs from 
contaminated environments. This method uses green plants to eliminate, 
break down, or detoxify dangerous metals. The procedure is simple, 

efficient, and cost-effective, with widespread implementation on a big scale. 
Nowadays, phytoremediation is a highly effective approach but its efficacy 
is largely dependent on the choice of plant species. The purpose of this 
study is to acquire some information regarding the sources and effects of the 
heavy metals arsenic, lead, and mercury (As, Pb, and Hg). It also provides 
a thorough analysis of phytoremediation technology, covering heavy metal 
uptake mechanisms and a number of related research findings.
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INTRODUCTION

The build-up of heavy metals in soils and waterways poses a risk to both 
environmental and human health. These substances accumulate in the 

body tissues of living organisms through bioaccumulation, and their levels 
intensify as they progress from lower to higher trophic levels, a phenomenon 
referred to as bio magnification. The presence of heavy metals in the soil 
can have toxic effects on soil microbes, ultimately leading to a decrease in 
their numbers and functional capabilities [1]. The remediation of soil for the 
preservation of ecosystem processes and functions represents one of the key 
challenges confronting our society today.

LITERATURE REVIEW

Chemical methods employed for the decontamination of Heavy Metals 
(HMs), encompassing precipitation, heat treatment, excavation, electro 
remediation, and chemical leaching, remains an expensive process and are 
dependent on both soil and pollutant properties [2]. The key drawbacks and 
constraints of these approaches include the alteration of soil characteristics 
particularly pH, potential threats of soil fertility decline, challenges in small-
scale implementation, and the generation of by-products. Phytoremediation, 
an environmentally benign method, is a cost-effective strategy for mitigating 
heavy metal contamination and revegetating contaminated soil. It involves 
utilizing hyper accumulator plants and their associated rhizospheric 
microorganisms to stabilize, transfer, or break down pollutants within soil, 
water, and the surrounding environment [3]. Plants, through their root 
system, have the potential to engross ionic complexes from the soil even 
at low concentrations. For the accumulation of heavy metals and regulate 
their bioavailability, plants spread their root systems into the soil matrix and 
create rhizosphere ecosystems, which stabilize soil fertility and allow for the 
reclamation of polluted soil. By considering the soil's conditions, pollutant 
attributes and the type of plants used. Five phytoremediation techniques 
have been employed: Phytodegradation, phytofiltration, phytoextraction, 
phytostabilization, and phytovolatilization (Figure 1). The simplest method 
for phytoremediation is utilizingheavy metal hyperaccumulators. Plants are 
classified as tolerant and/or hyper accumulator to Heavy Metals (HMs) 
when they exhibit accelerated growth, high biomass, and the capability to 
extract and amass significant quantities of HMs in their shoots, all without 
demonstrating signs of toxicity when cultivated in contaminated soils with 
these metals [4]. In light of this, the incorporation of this green technology 
emerges as a powerful strategy for remediating soils or agro-ecosystems 
impacted by Heavy Metal (HMs) contamination.

A detailed examination has been undertaken to provide an extensive 
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metals induces oxidative stress by generating free radicals [27]. Furthermore, 
they have the potential to act as replacements for primary metals in both 
pigments and enzymes [28]. Among heavy metals, Arsenic (As), Mercury 
(Hg), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Tin (Sn), 
and Zinc (Zn) are identified as the most toxic [29]. Within these heavy 
metals, Mercury (Hg), Cadmium (Cd), Lead (Pb), and Arsenic (As) are non-
essential, while Copper(Cu) and Zinc (Zn) are recognized as trace elements. 
Depending on the type of toxic heavy metal, its concentration, and oxidation 
state, a spectrum of health problems can emerge (Table 1).

TABLE 1
Health hazards associated with specific heavy metals

Heavy metal Related hazardous effects Reference

As Interferes with key cellular functions 
in human body Tripathi et al., [30]

Cd Chronic anemia, mutagenic, renal 
failure and carcinogenic etc.

Degraeve [31], Salem 
et al., [32]

Cr Hair loss Salem et al., [32]

Cu

Brain and kidney injury, liver 
cirrhosis, stomach and intestinal 

inflammation have all been linked to 
elevated levels

Wuana and Okieimen 
[33]

Hg

Anxiety, autoimmune disorders, 
depression, trouble with 

coordination, exhaustion, loss of 
hair, insomnia, irritability, ulcers, and 
brain, kidney, and lung damage are 

just a few of the symptoms

Ainza et al., [34], 
Verma et al., [35]

Ni

Nickel itch is allergic dermatitis; 
inhalation can cause lung, nose, 
and sinus cancers; throat and/or 

stomach cancers. Causes hair loss 
by being hematotoxin, neurotoxic, 

genotoxic, nephrotoxic, and 
hepatotoxic

Khan et al., [36], Das 
et al., [37]

Pb

Decreased intelligence, learning 
difficulties, and balance issues in 
infants, as well as renal failure, 

cardiovascular disease

Wuana and Okieimen, 
[33], Mishra et al., [38]

Zn Overdosing will result in dizziness 
and exhaustion Hess and Schmid [39]

Mechanism of phytoremediation

The term "phytoremediation" combines "phyto" (plant) and and the Latin 
suffix "remedium" meaning "restore." is an approach that utilizes both natural 
and transgenic plants to restore ecosystems impacted by pollution [30-40]. In 
the implementation of phytoremediation for mitigating heavy metal effects, 
two defense strategies; avoidance and tolerance, can be employed [41]. 
Through the application of these strategies, plants manage to prevent heavy 
metal concentrations from reaching lethal thresholds [42]. The mechanism 
of avoidance involves plants using root cells to limit and regulate the uptake 
and translocation of heavy metals into their tissues [43]. This process involves 
a range of defense mechanisms, including root sorption, metal precipitation, 
and exclusion [43]. Plants, when exposed to Heavy Metals (HMs), undergo 
the root sorption process, leading to the immobilization of metals. Various 
root exudates function as ligands for heavy metals, forming complexes within 
the rhizosphere to limit the bioavailability and lethality of these metals. In 
a similar fashion, exclusion barriers existing between the root and shoot 
systems restrict the availability of Heavy Metals (HMs) from the soil to the 
roots. Moreover, arbuscular mycorrhiza have the potential to function as 
exclusion barriers in the rhizosphere, through processes such as absorption, 
adsorption, or chelation of Heavy Metals (HMs). The inclusion of Heavy 
Metals (HMs) in the plant cell wall serves as an additional mechanism for 
avoidance. The carboxylic groups, specifically in the pectin groups of the 
cell wall, function as cation exchangers, restricting the penetration of Heavy 
Metals (HMs) into the cells [44]. Plants utilize the tolerance strategy when 
heavy metal ions enter the cytosol to address the challenge of their toxicity. 
This is achieved through mechanisms such as inactivation, metal chelation, 
and compartmentalization of heavy metals [43]. The concentration of Heavy 

Metals (HMs) is reduced in the cytoplasm through the process of chelation, 
involving various organic and inorganic ligands [45]. After chelation, 
Heavy Metal (HM) ligand complexes move from the cytosol to inactive 
compartments like the vacuole, leaves, petioles, leaf sheaths, and trichomes. 
These compartments function as storage sites without inducing any toxicity 
[46].

When there is a notable accumulation of Heavy Metals (HMs), the described 
strategies might fall short in remediating contaminated sites. This is due 
to the potential of HMs to induce the production of Reactive Oxygen 
Species (ROS) in the cytoplasm, leading to oxidative stress [47]. In the 
face of such a scenario, plant cells adopt the use of antioxidant enzymes, 
including Superoxide Dismutase (SOD), Catalase (CAT), Peroxidase (POD), 
and Glutathione Peroxidase (GR). Moreover, non-enzymatic antioxidant 
compounds like glutathione, flavonoids, carotenoids, ascorbate, and 
tocopherols are brought into action. These elements are employed to trigger 
the scavenging of Reactive Oxygen Species (ROS) [47,48] Therefore, the 
antioxidant defense mechanism is highly crucial and imperative in dealing 
with the stress induced by Heavy Metals (HMs).

Phytoremediation practices

Phytoremediation techniques consist of phytoextraction, phytovolatilization, 
phytostabilization, phytofiltration, phytodegradation and rhizodegradation 
(Figure 1).

Phytoextraction: Phytoextraction, also referred to as phytoaccumulation, 
phytoabsorption, or phytosequestration, involves the absorption of 
contaminants from soil or water by plant roots. These contaminants are 
subsequently transported to and stored in the above ground biomass, 
particularly in the shoots [49-51]. One long-term approach for the Heavy 
Metals (HMs) detoxification is the harvesting of biomass. Phyto extraction, 
utilizing plant species such as Invasive Plant Species (IPS), which grow quickly 
and have deep roots. It serves as an efficient method to eradicate different 
harmful heavy metals from the environment. Phyto extraction comprises 
two main concepts, with the first being continuous phytoextraction. This 
natural phenomenon is inherent in specific plant species known as hyper 
accumulators, allowing them to store higher concentration of Heavy Metals 
(HMs) without facing negative consequences. Induced phytoextraction 
involves the incorporation of additional components to the plant to control 
the effects of Heavy Metals (HMs) through the formation of complex with 
phytochelatin. This complex is then translocated to different parts of the 
plant, including the vacuole, cell membrane, and other metabolically inactive 
areas [52,53]. As per the studies of Begonia et al., [54], plants exhibiting 
rapid proliferation and a resilient root system, such as Coffee weed (Sesbania 
exaltata), are successful in the phytoextraction process for eliminating Pb 
from polluted soil. Yang et al., [55] examined the field performance of three 
Napier grass (Pennisetum purpureum) cultivars in absorbing Cd and Zn. 
The research demonstrated that P. purpureum cv. Guiminyin exhibited the 
highest shoot accumulation of Cd and Zn. P. stratiotes commonly referred 
to as water lettuce, has gained broad usage, notably due to its capability for 
hyper accumulating Heavy Metals (HMs) [56].

Figure 1) Phytoremediation techniques for heavy metals uptake
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of pollutants in the rhizosphere is probably due to the rise in both the 
numbers and metabolic activities of microbes. Plants have the potential 
to boost the activity of microorganisms in the rhizosphere by 10-100 times 
by the secretion of exudates that are abundant in carbohydrates, amino 
acids, and flavonoids. The exudates released by plant roots, enriched with 
nutrients provide carbon and nitrogen sources to soil microbes, fostering a 
nutrient-rich environment that enhances microbial activity. Plants not only 
secrete organic substrates to support the growth and activities of rhizospheric 
microorganisms but also release specific enzymes with the ability to degrade 
organic contaminants in soils [78,79].

Phytodesalination

Phytodesalination, a recently developed and emerging technique that 
utilizes halophytic plants to to address saline soils and stands as the most 
often employed biological technique for this kind of decontamination [80-
83]. Plant species, as well as soil characteristics including salinity, sodicity, 
and porosity, as well as other climatic elements especially rainfall, all have 
an impact on the efficacy of phytodesalination [81]. Two halophytic plants, 
Sesavium partulacastrum and Suaeda maritime, were discovered to be able 
to extract roughly 504 kg and 474 kg of NaCl, respectively, from one hectare 
of saline soil in a period of four months [82]. Research on the ability of 
halophytic plants to desalinate salt has shown encouraging outcomes for the 
recovery of soil impacted by sodium (Na+) and chloride (Cl−) ions. Although 
this bioremediation technique is not effective for decontaminating heavy 
metal and Polycyclic Aromatic Hydrocarbon (PAH)-polluted soils, it holds 
potential for addressing salt-affected soils [84-86].

Biotechnological processes

Genetic engineering techniques have been used in recent decades to boost 
the potential of plants for Heavy Metal (HMs) decontamination. Plants have 
been genetically altered by genetic engineering through the incorporation 
of genes from bacteria and plants known as hyper accumulators, which 
are distinguished by their exceptional transformation, degradation, or 
accumulation capabilities [84]. Numerous studies have highlighted the use 
of transgenic methods to bolster phytoremediation. This strategy involves 
introducing genes to plants exhibiting rapid growth rate to improve 
tolerance and hyper accumulation of hazardous heavy metals [85]. Choose 
plant species that are well-adapted to the local climate. This approach can 
be applied to amplify biomass, augment metal storage capacity, and foster 
the hyper accumulation of various heavy metals [86]. For the successful 
implementation of a phytoextraction strategy, plants should produce a 
large volume of green foliage and are easily harvestable, preferably multiple 
times throughout the year [87]. Despite this, in the wild, most native species 
identified as hyper-accumulators tend to be herb or shrub plants with limited 
green biomass. Researchers are actively working on creating transgenic 
varieties characterized by higher biomass [88]. Essential traits for plants 
that are good candidates for phytoremediation encompass substantial root 
volume, significant foliage biomass, a notable transpiration rate facilitating 
efficient metal assimilation, and the production of ample exudates. The 
rapid growth rate and/or substantial biomass aid in reducing the time frame 
needed for soil remediation. The understanding of the eco-physiology of 
metal hyper-accumulation in plants has advanced in the last few years due to 
the evolution of molecular tools, including the identification of heavy metal 
transporters, the production of enzymes, and the development of metal-
detoxifying chelators. 

Despite the notable potential of genetic engineering in phytoremediation, 
there are still hurdles to overcome. The intricacies associated with 
decontamination of Heavy Metal (HM) accumulation means that genetic 
manipulation of several genes to improve the desired features can be a 
laborious and less effective approach. In certain parts of the world, it is 
challenging to obtain license and approval for genetically modified plants 
due to worries about their use, which could endanger the safety of both 
food and ecosystems. Other approaches are required to improve and boost 
the productivity of plant species used in phytoremediation because of the 
complexity of genetic engineering.

CONCLUSION

The pollution caused by heavy metals poses a serious threat to human 
health on a global scale. Phytoremediation is a more economical, socially 
acceptable, and environmentally benign technology as compared to other 

Phytofiltration: Phytofiltration is a technique where plant roots, shoots, 
and seedlings are employed to cleanse pollutants from a waste area or 
contaminated water [57]. In the practice of phytofiltration, plant roots, 
shoots, and seedlings are employed to extract pollutants from either a 
waste area or contaminated water. This method can be executed in situ, 
with plants grown directly within the polluted water body, resulting in cost 
savings. According to da Conceiçao Gomes et al., [58] three categories of 
phytofiltration are detailed as rhizofiltration (involving roots), caulofiltration 
(involving shoots), and blastofiltration (involving seedlings). Rhizofiltration 
involved the use of plant roots to draw in pollutants from polluted soils and 
water, cleansing the environment through processes such as accumulation, 
adsorption, absorption, and precipitation into plant biomass [59]. Terrestrial 
and rapidly proliferating aquatic plants are both applicable in rhizofiltration 
for the extraction of cadmium, chromium, copper, nickel, lead and zinc 
[60]. For the phytoremediation of pesticide-contaminated agro-industrial 
wastewater, water hyacinth is a viable, affordable, and ecologically friendly 
solution.

Phytostabilization: Phytostabilization entails multiple mechanisms like 
precipitation, sorption, complexation, and the reduction of metal valence in 
the root zone of plant roots. Its aims include averting erosion, leaching, or 
run-off and transforming heavy metals [61]. A prime example of heavy metal 
conversion is seen in the reduction of Cr+6, a more toxic metal form, to Cr+3, 
a less toxic and more mobile species [62]. Typically, this method is utilized to 
mitigate the detrimental impacts of heavy metals in contaminated soil, water, 
sludge, or sediment by impeding their entry into groundwater and the food 
chain [63]. Phytostabilization, which is also known as phytoimmobilization, 
encompasses the amalgamation of toxic heavy metals with plant root 
exudates to transform them into a non-toxic state within ecosystems [64]. 
Heavy Metals (HMs) interacting with derivatives of amino acids, proteins, 
and sugars in the rhizosphere give rise to complexes that help to immobilize 
the toxicity of these hazardous metals. For instance, the toxic form of arsenic 
transforms into a non-toxic state (As-tris-thiolate) after forming a complex 
with ferric sulfate in the rhizosphere, particularly within the vacuoles.

Phytovolatilization: Phytovolatilization encompasses plants absorbing 
pollutants from the soil, converting them into a volatile form, and 
subsequently releasing them into the atmosphere [65]. Commonly 
chosen plants for phytovolatilization include Nicotiana tabacum, Crinum 
americanum, Triticum aestivum, Arabidopsis thaliana, Bacopa monnieri, 
and Trifolium repens [66]. According to Herath and Vithanage [66], 
phytovolatilization aids in breaking down organic pollutants like phenol, 
acetone, and chlorinated benzene (BTEX). One important advantage of 
phytovolatilization is that, once the plantation is fully established, it requires 
very little more management. It also disturbs the soil the least and preserves 
the texture of the soil [67-68]. However, the application of this method is 
limited as it doesn't eliminate the pollutant entirely; rather, it is transferred 
from one area (soil) to another (atmosphere), where it could be redeposited 
[69].

Phytodegradation: During phytodegradation, organic pollutants are either 
broken down by the enzymes involved in the metabolism of the plant, or they 
are broken down after being sequestered by the plant through a variety of 
metabolic processes [70]. Dehalogenase, peroxidase, nitrilase, nitroreductase 
and phosphatase are among the enzymes that break down contaminants 
[71]. In this method, pollutants are directly absorbed into the plant tissue 
through the root system. The effectiveness of this process depends on the 
root’s efficiency of uptake, rate of transpiration, and other relevant chemical 
and physical characteristics. The process of phytodegradation can be used 
to decontaminate areas impacted by organic pollutants, such as herbicides 
and chlorinated solvents [72]. It can be applied to groundwater and surface 
water restoration [68]. Several plants can be employed in this approach; 
sunflower (Helianthus annus) is a popular option for methyl benzotriazole 
[73]. Ethylene dibromide can be effectively treated with Leucocephala 
[74]. This approach has some limitations, including the requirement that 
the groundwater be within ten feet of the surface and the soil be three feet 
deep. Chelating chemicals, which bind soil particles with pollutants, are an 
essential part of increasing plant absorption [75].

Rhizodegradation: The microbial decomposition of organic contaminants 
in the soil within the rhizosphere is known as rhizodegradation [76]. The 
plant has an impact on the rhizosphere within a radius of roughly 1 mm 
surrounding the root [77]. The principal reason for the enhanced breakdown 
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chemical approaches for decontamination of heavy metals. To improve the 
phytoremediation potential of plants, a variety of bioremediation techniques 
have been widely used. These approaches encompass genetic engineering, 
transgenic transformation, the utilization of phytoremediation assisted 
by phytohormones, microbial applications, AMF inoculation, and the 
introduction of Nanoparticles (NPs). Phytoremediation is a technology that 
is still in its early stages and primarily in the research phase. Research in this 
area is highly interdisciplinary, mandating a well-rounded understanding of 
soil chemistry, plant biology, ecology, soil microbiology, and environmental 
engineering. Fortunately, open-minded scientific communities worldwide 
recognize and highly promote multidisciplinary studies and research. 
Research is currently being done to evaluate native plants' capacity for 
phytoremediation of particular heavy metals. Assessing the impact of various 
parameters on phytoremediation's efficiency is another aspect of the study. 
Additionally, efforts are being made to genetically alter specific plants in 
an effort to increase the effectiveness of their phytoremediation of heavy 
metals and other xenobiotics. The development and successes of these 
kinds of molecular investigations will be essential to comprehending the 
understanding and enhancing the efficacy of phytoremediation.
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